Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

(Azido-кN)bis(di-2-pyridylamine)copper(II) hexafluorophosphate and (azido- κN)bis(di-2-pyridylamine)copper(II) chloride tetrahydrate

Sujittra Youngme, ${ }^{\text {a* }}$ Jaturong Phatchimkun, ${ }^{\text {a }}$ Chaveng Pakawatchai, ${ }^{\text {b }}$ Samran Prabpai ${ }^{\text {c }}$ and Palangpon Kongsaeree ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand, ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Science, Prince of Songkla University, Hatyai, Songkla 90112, Thailand, and ${ }^{\text {c }}$ Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
Correspondence e-mail: sujittra@kku.ac.th

Received 13 November 2006
Accepted 5 December 2006
Online 13 January 2007

The two new title complexes, $\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)(\text { dpyam })_{2}\right] \mathrm{PF}_{6}$ (dpyam is di-2-pyridylamine, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3}$), (I), and $\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)(\text { dpyam })_{2}\right] \mathrm{Cl} \cdot-$ $4 \mathrm{H}_{2} \mathrm{O}$, (II), respectively, have been characterized by singlecrystal X-ray diffraction. Both complexes display a distorted square-pyramidal geometry. Each Cu atom is coordinated in the basal plane by three dpyam N atoms and one azide N atom in equatorial positions, and by another N atom from the dpyam group in the apical position. In complex (I), the onedimensional supramolecular architecture is assembled via hydrogen-bonding interactions between the amine N atom and terminal azide N atoms and the F atoms of the $\mathrm{PF}_{6}{ }^{-}$anion. For complex (II), hydrogen-bonding interactions between the amine N atom, the Cl^{-}anion and water O atoms result in a two-dimensional lattice.

Comment

The synthesis of pseudohalide-bridged complexes continues to be a subject of much interest, and intensive investigations have taken place as a result of their diverse structures and potential

applications in magnetic materials. Pseudohalide ligands ($\mathrm{OCN}^{-}, \mathrm{SCN}^{-}, \mathrm{N}_{3}{ }^{-}$, etc.) can coordinate to transition metal
atoms in different ways, for example, as a terminal ligand or as a bridge (Talukder et al., 2004). One-, two- or three-dimensional supramolecular architectures assembled via intermolecular non-covalent interactions are of considerable interest for the crystal engineering of new functional solidstate materials, as well as for their fascinating structures (Gao et al., 2001). Hydrogen bonding, which combines directionality, selectivity and strength, has been noted as the most versatile organizing force for supramolecular assembly (Chen et al., 2001). We report here the two new title complexes, $\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)(\text { dpyam })_{2}\right] \mathrm{PF}_{6}$, (I), and $\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)(\text { dpyam })_{2}\right] \mathrm{Cl} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, (II). The dpyam ligand has been selected primarily because it also has an $\mathrm{N}-\mathrm{H}$ hydrogen-bond donor function that might produce one-, two- or three-dimensional supramolecular architectures.

The crystal structures of (I) and (II) (Figs. 1 and 2) consist of a $\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)(\text { dpyam })_{2}\right]^{+}$cation and PF_{6}^{-}and Cl^{-}anions,

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as small spheres of arbitrary radii. Only one of the disordered components of the $\mathrm{PF}_{6}{ }^{-}$anion is shown.

Figure 2
The molecular structure of (II), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as small spheres of arbitrary radii.
respectively. The Cu atoms of both molecules exhibit fivecoordination of the $\mathrm{CuN}_{4} \mathrm{~N}^{\prime}$ chromophore (see scheme). The coordination around each Cu atom consists of three dpyam N atoms and one azide N atom in equatorial positions, and another N atom from dpyam in the apical position. Both complexes exhibit a slightly distorted square-pyramidal environment, the geometric τ values (Addison et al., 1984) being 0.061 for (I) and 0.148 for (II). The average $\mathrm{Cu}-\mathrm{N}$ distances (Tables 1 and 3) in the equatorial positions are 2.017 (1) \AA for (I) and 2.009 (1) \AA for (II). The axial $\mathrm{Cu}-\mathrm{N}$ distances are longer, at 2.153 (2) \AA for (I) and 2.169 (2) \AA for (II). The Cu atoms are displaced by 0.264 (1) \AA for (I) and 0.255 (1) \AA for (II) from the mean basal plane towards the apical position. The dpyam ligands are not planar, with dihedral angles between the two pyridine rings of 34.4 (1) and 16.1 (1) ${ }^{\circ}$ for (I), and 35.3 (1) and 14.6 (1) ${ }^{\circ}$ for (II).

There are extensive hydrogen-bonding interactions in both structures. In complex (I), intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ (azide) hydrogen-bonding interactions (Table 2) produce a one-dimensional chain (Fig. 3). The crystal packing of complex (II) is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$, $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ (azide), $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen

Figure 3
A packing diagram for (I), with hydrogen bonds (dashed lines), showing the one-dimensional structure.

Figure 4
A packing diagram for (II), with hydrogen bonds (dashed lines), showing the two-dimensional structure.
bonds (Table 4), leading to a two-dimensional supramolecular structure (Fig. 4).

The chromophores of (I) and (II) are very similar except for the four additional water molecules in the structure of complex (II), which create a two-dimensional hydrogenbonded network in (II).

Experimental

Complex (I) was prepared by adding a warm solution of di-2pyridylamine ($0.17 \mathrm{~g}, 1.00 \mathrm{mmol}$) in methanol (15 ml) to a hot aqueous solution (10 ml) containing $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.091 \mathrm{~g}$, $0.5 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(0.065 \mathrm{~g}, 1.0 \mathrm{mmol})$. An aqueous solution $(15 \mathrm{ml})$ of $\mathrm{KPF}_{6}(0.184 \mathrm{~g}, 1.0 \mathrm{mmol})$ was then added, giving a clear green solution. The resulting solution was evaporated slowly at room temperature. After several days, green needle-shaped crystals of (I) which had formed were filtered off, washed with mother liquor and air-dried (yield ca 90%). Green needle-shaped crystals of (II) were obtained by adding a warm solution of di-2-pyridylamine (0.171 g , 1.0 mmol) in methanol (15 ml) to a boiling aqueous solution (15 ml) of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.085 \mathrm{~g}, 0.5 \mathrm{mmol}) . \mathrm{NaN}_{3}(0.130 \mathrm{~g}, 2.0 \mathrm{mmol})$ was then added to the reaction mixture. After several days, crystals of (II) which had formed were filtered off, washed with mother liquor and air-dried (yield ca 85%). The electronic reflectance spectra of both complexes involve main peaks at 14050 and $14000 \mathrm{~cm}^{-1}$, and lower energy shoulders at 11010 and $11110 \mathrm{~cm}^{-1}$ for (I) and (II), respectively. These spectroscopic characteristics of the compounds are consistent with a distorted square-pyramidal geometry with a small τ value. The transitions may be assigned as the $d_{z^{2}} \rightarrow d_{x^{2}-y^{2}}$ transition for the low-energy shoulder and the $d_{x z} \sim d_{y z} \rightarrow d_{x^{2}-y^{2}}$ transition for the high-energy peak. The strongest intensity features in the spectra of (I) and (II) appear at 2042 and $2040 \mathrm{~cm}^{-1}$, respectively, together with sharp and medium intensity peaks at 2035 and $2034 \mathrm{~cm}^{-1}$, respectively, attributed to $v_{\text {as }}\left(N_{3}\right)$. For the IR spectrum of sodium azide, a single strong peak at $2033 \mathrm{~cm}^{-1}$ is observed. Hence, in the present compounds, the shift towards higher wavenumbers of the $v_{\text {as }}$ stretching of the azide indicates that it must be coordinated.

Compound (I)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3}\right)_{2}\right] \mathrm{PF}$
$M_{r}=592.94$
Monoclinic, $P 2_{1} / n$
$a=14.1074$ (8) £
$b=8.5839$ (5) \AA
$c=19.4144$ (11) \AA
$\beta=95.6350(10)^{\circ}$
$V=2339.7$ (2) \AA^{3}
Data collection
Siemens SMART CCD area

detector diffractometer

ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2000a)
$T_{\text {min }}=0.769, T_{\text {max }}=0.884$
$Z=4$
$D_{x}=1.683 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.08 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Needle, green
$0.31 \times 0.21 \times 0.11 \mathrm{~mm}$

19955 measured reflections 5804 independent reflections 4381 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$
$\theta_{\text {max }}=28.3^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.111$
$S=1.05$
5635 reflections
397 parameters
H atoms: see below

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0547 P)^{2} \\
&+0.9007 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (I).

$\mathrm{Cu} 1-\mathrm{N} 1$	$2.0046(19)$	$\mathrm{Cu} 1-\mathrm{N} 5$	$2.0361(19)$
$\mathrm{Cu} 1-\mathrm{N} 7$	$2.009(2)$	$\mathrm{Cu} 1-\mathrm{N} 4$	$2.1534(19)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.0166(19)$		
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 7$	$88.15(8)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 5$	$89.82(8)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$88.00(8)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 4$	$108.15(8)$
$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 2$	$166.76(8)$	$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 4$	$96.51(8)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 5$	$163.10(8)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 4$	$96.73(8)$
$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 5$	$90.18(8)$	$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 4$	$88.75(8)$

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H5 $\cdots \mathrm{F3}^{\mathrm{i}}$	$0.86(2)$	$2.20(2)$	$3.045(12)$	$168(2)$
N3-H5 $\cdots \mathrm{F} 3 A^{\mathrm{i}}$	$0.86(2)$	$2.14(2)$	$2.963(8)$	$161(2)$
N6-H15 N^{ii}	$0.86(2)$	$2.27(2)$	$3.130(3)$	$179(3)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+1,-y+1,-z$.

Compound (II)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{N}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3}\right)_{2}\right] \mathrm{Cl} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=555.49$
Monoclinic, $P 2_{1_{1}} / c$
$a=7.0560(2) \AA$
$b=27.8360$ (13) \AA
$c=12.8780(6) \AA$
$\beta=99.009(2)^{\circ}$
$V=2498.18(18) \AA^{3}$
Data collection
Enraf-Nonius MACH3
diffractometer
ψ scan
12357 measured reflections

Refinement

Refinement on F^{2}
$Z=4$
$D_{x}=1.477 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.03 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Needle, green
$0.50 \times 0.20 \times 0.15 \mathrm{~mm}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.147$
$S=1.10$
6407 reflections
348 parameters
H atoms: see below

$$
\begin{aligned}
& 6685 \text { independent reflections } \\
& 4900 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.032 \\
& \theta_{\max }=29.1^{\circ} \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0828 P)^{2}\right. \\
& \quad+0.2714 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.012 \\
& \Delta \rho_{\max }=0.46 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.82 \mathrm{e}^{-3}
\end{aligned}
$$

In (I), H atoms attached to N3 and N6 were located in a difference Fourier map and refined with a DFIX (SHELXTL; Sheldrick, 2000b) restraint of $\mathrm{N}-\mathrm{H}=0.86$ (1) \AA. The remaining H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The F atoms of the hexafluorophosphate group showed disorder; the occupancies of the disordered positions were initially refined and later fixed at 0.5 . In (II), H atoms attached to water O atoms were located in difference Fourier maps and refined with a DFIX restraint of $\mathrm{O}-\mathrm{H}=$ 0.90 (1) \AA. The remaining H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 2000) for (I); MACH3 (EnrafNonius, 1993) for (II). Cell refinement: SAINT (Bruker, 2000) for (I);

Table 3
Selected geometric parameters ($\AA,^{\circ}$) for (II).

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.999(2)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.028(2)$
$\mathrm{Cu} 1-\mathrm{N} 5$	$2.003(2)$	$\mathrm{Cu} 1-\mathrm{N} 4$	$2.169(2)$
$\mathrm{Cu} 1-\mathrm{N} 7$	$2.007(2)$		
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 5$	$169.35(9)$	$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 2$	$160.47(10)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 7$	$86.36(9)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 4$	$102.54(8)$
$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 7$	$88.99(9)$	$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 4$	$87.86(8)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$87.37(8)$	$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 4$	$103.42(10)$
$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 2$	$93.91(8)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 4$	$95.99(8)$

Table 4
Hydrogen-bond geometry ($\AA{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 W \cdots \mathrm{O} 3$	$0.90(3)$	$1.96(3)$	$2.855(4)$	$172(1)$
$\mathrm{O} 1-\mathrm{H} 2 W \cdots \mathrm{O}^{\mathrm{i}}$	$0.90(2)$	$1.95(2)$	$2.847(4)$	$178(1)$
$\mathrm{O} 2-\mathrm{H} 3 W \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.90(3)$	$2.30(3)$	$3.203(4)$	$174(1)$
$\mathrm{O} 2-\mathrm{H} 4 W \cdots \mathrm{~N} 9$	$0.91(4)$	$2.12(4)$	$2.964(5)$	$153(5)$
$\mathrm{O} 3-\mathrm{H} 5 W \cdots \mathrm{O} 4$	$0.92(4)$	$1.84(4)$	$2.751(4)$	$171(4)$
$\mathrm{O} 3-\mathrm{H} 6 W \cdots \mathrm{Cl} 1$	$0.89(3)$	$2.27(3)$	$3.151(3)$	$170(3)$
$\mathrm{O} 4-\mathrm{H} 7 W \cdots \mathrm{O} 2$	$0.89(3)$	$1.96(3)$	$2.843(5)$	$174(3)$
$\mathrm{O} 4-\mathrm{H} 8 W \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.90(4)$	$1.89(4)$	$2.768(4)$	$164(1)$
$\mathrm{N} 3-\mathrm{H} 5 \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.86	2.56	$3.256(2)$	139
$\mathrm{~N} 6-\mathrm{H} 15 \cdots \mathrm{Cl} 1$	0.86	2.49	$3.297(2)$	157

Symmetry codes: (i) $-x+2,-y,-z$; (ii) $x-1, y, z$; (iii) $x, y, z+1$.

MACH3 for (II). Data reduction: SAINT for (I); MolEN (Fair, 1990) for (II). For both compounds, program(s) used to solve structure: SHELXTL (Sheldrick, 2000b); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge the Thailand Research Fund (grant Nos. RTA 4880008 and BRG 4980007) and the Higher Education Development Project: Postgraduate Education and Research Programme in Chemistry, Thailand, for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SF3027). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Bruker (2000). SMART (Version 5.6) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, X.-F., Cheng, P., Liu, X., Zhao, B., Liao, D.-Z., Yan, S.-P. \& Jiang, Z.-H. (2001). Inorg. Chem. 40, 2652-2659.

Enraf-Nonius (1993). MACH3 Server Software. Open VMS Version. EnrafNonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Gao, E.-Q., Liao, D.-Z., Jiang, Z.-H. \& Yan, S.-P. (2001). Acta Cryst. C57, 807809.

Sheldrick, G. M. (2000a). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2000b). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Talukder, P., Datta, A., Mitra, S., Rosair, G., Salah El Fallah, M. \& Ribas, J. (2004). J. Chem. Soc. Dalton Trans. pp. 4161-4167.

